
予習・復習/一問一答クイズ
出題文をクリックでクイズにチャレンジ!
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①cos20°×cos40°×cos80°の値よりもaの値の方が小さい。
②Nより小さい素数の中で最大のものをMとすると、Mの1の位は3である。
③Nは連続する4つの自然数の和で表せる。
④3辺の長さが互いに素の自然数である直角三角形の1辺の長さがNの時、長さがNである辺が3辺の中で最も短い。
解答を表示する
正解:②
解説:まず、Nを求めます。
まずは素数である2、3、5、7に着目し2×3×5×7=210となります。また、2と4と8の最小公倍数は8で、3と9の最小公倍数が9であることに着目し210と6と8と9の最小公倍数を求めます。するとすぐにN=2520と求まります。ここからは余裕でしょう。
①Nは1から9までの最小公倍数よりも大きい。
②11の倍数を判定するには偶数桁目の数の和から奇数桁目の数の和を引けばよい。
③9の倍数は各桁の2乗和が9の倍数になれば良い。
④8の倍数は下2桁の数が00か8の倍数になっていれば良い。
解答を表示する
正解:②
解説:11の倍数の判定法は証明もできるようにしましょう。
①7の倍数は実際に7で割るしか確かめる方法はない。
②Mは13の倍数である。
③Mは1の位、10の位、100の位の全てが奇数の自然数である。
④Mの約数は6個ある。
解答を表示する
正解:③
解説:M=951です。7で割っても9で割っても余りが6となります。
①[[a]+[b]+[c]]=[a+b+c]
②[cx]<cx(cは定数とする)
③Mは5で割っても7で割っても余りが同じになる3桁の自然数でもある。
④2[x]=[x+[x]]
解答を表示する
正解:④
解説:ガウス記号を考えるときは整数部分と小数部分に分けて考えます。
するとどんな時でも成立するのは1つしかありませんね。

その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
説明:今回は文字式から出題します。当然ですが、1次式が出ます。頑張ってください!
①b
②ab
③a分のb
④a
解答を表示する
正解:②
解説:×は省略できます。÷も省略でき、+と−は省略できません
①bbbbbbbbbbbbbb
②1b4
③b14
④[a]+[b]+[ab]+1=[a+b+ab+1]
解答を表示する
正解:14b
解説:数字は先頭に来ます。bbbbbbbbbbbbbbなんてどんな答えなんでしょうねww
①14b
②5(3y+n)
③yyyyyyyyyyyyyyynnnnn
④20yn
解答を表示する
正解:②
解説:ある法則とは分配法則です。実際に4択の中に15y+nという答えがあったはずです。
その答えは分配法則を使っています。しかし、まだそれを使っていない段階での授業の問題ですので15y+nは不正解です。
①4a
②15y+5n
③400a
④aの4乗
解答を表示する
正解:④
解説:あれとは累乗です。表記上、指数を表せず、4乗と書く事になってしまいました。
わかりにくいですねえ。
①海老海老〜
②aの2乗bの2乗
③abab
④abba
解答を表示する
正解:②
解説:普通に累乗を使えば簡単です(分かりにくすぎる)
①(a+1000b)m
②(100a+b)m
③(10000a+b)m
④(1000a+b)m
解答を表示する
正解:④
解説:1km=1000mです。
①aaaa
②4bac
③abc(4)
④4cba(シビア)
①4a(2)bc(2)
②28a
③16a
④60a+140ヽ(゚∀。)ノ
解答を表示する
正解:②
解説:aではない数字はそれぞれ8、−8になるので表示されません
①6a+9b
②7a+8b
③5a+9b
④6a+8b
①2a-25b
②-2a-b
③-2a-25b
④25a+3