Quizoo くいずー

クイズ・検定一覧
マルバツクイズ一覧
トップページ
予習・復習/一問一答クイズ
このクイズ・検定で出題される問題の予習・復習ができます。
答えを見たい場合は「解答を表示する」をクリックしてください。
満点合格を目指しましょう!
①R^nの有界点列は収束する部分列を持つ
②実係数多項式関数は実数上連続である
③ノルム空間の単位球面はコンパクトである
④実対称行列は常に直交行列により対角化可能である
解答を表示する

正解:③

解説:ノルム空間において,閉単位球がコンパクト⇔有限次元 が成り立ちます。

①2πi
②πi/12
③πi/3
④πi
解答を表示する

正解:①

解説:留数定理より求まります。

①A,Bを可算集合とするとき,AからBへの写像全体の集合は可算集合である
②コンパクト集合は閉集合である
③R上の実連続関数列がR上の実連続関数に各点収束するならば,一様収束する
④R上局所リプシッツ連続な実数値関数はルベーグ測度に対して殆ど至る所微分可能である
解答を表示する

正解:④

解説:ラーデマッヘルの定理の特別な場合です。

①7個
②3個
③1個
④5個
解答を表示する

正解:①

解説:y=f(f(f(x)))のグラフとy=xのグラフの交点を数えれば7個になります。

①有限個の奇素数の積に2を足すと必ず素数となる
②f(n)=n^2+n+41とするとき,0≦n≦39に対してf(n)は素数である
③任意の正の整数aに対し,10a≦p≦10a+9を満たす素数pが必ず存在する
④正の偶数nに対し,n=p+qとなる素数p,q(p≦q)が存在するならば,一意である
解答を表示する

正解:②

かんたん算数検定を受験!
戻る
クイズ・検定一覧
マルバツクイズ一覧
トップページ
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、文字式テストより、出題しております。
説明:中学一年生で習う基礎的な問題です。皆さんは解けますか?
①24/25a円
②a円
③96/100a円
④25a円
解答を表示する

正解:①

解説:定価は a+a×2/10=12/10a 定価の2割引きなので 定価の8割で売ったから 12/10a×8/10 =12×8/10×10a 約分して 24/25a円になります。

①144
②72
③36
④108
解答を表示する

正解:②

①2
②-4
③4
④-2
解答を表示する

正解:③

①-1
②-2
③1
④2
解答を表示する

正解:①

①-2
②1
③-1
④2
解答を表示する

正解:③

解説:-5X=5

①(6, 2)
②(4, 3)
③(2, 6)
④(3, 4)
解答を表示する

正解:①

このクイズ・検定のランキング

順位
ユーザー名
出題
正解
タイム
合否
1 位
T.M.
5問
5問
00:00:08
合格
2 位
ノンちゃん
5問
5問
00:00:22
合格
3 位
ぷりん
5問
5問
00:02:59
合格
4 位
謎キング
5問
1問
00:00:27
5 位
yellow
5問
0問
00:00:23