Quizoo くいずー

 掛け算検定!! より
掛け算検定です。簡単
 5×3×1×2
  1. 11
  2. 5312
  3. 30
  4. 88888558888
制限時間:無制限
コメント
難易度:
出題数:0人中
正解数:0人
正解率:0%
作成者:逢花たち (ID:21223)
No.出題No:32243
最高連続正解数:0 問
現在の連続記録:0 問
検定に挑戦
一問一答クイズ一覧
予習・復習
トップページ
 予習・復習/一問一答クイズ
出題文をクリックでクイズにチャレンジ!
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。
こちらで学習をして、このクイズ・検定の合格を目指しましょう!
①あい
②31111111
③33
④3
解答を表示する

正解:③

①12
②120
③19
④88888558888
解答を表示する

正解:②

登録タグ
関連するクイズ・検定
その他のクイズ・検定
検定に挑戦
クイズ・検定一覧
○×マルバツクイズ一覧
一問一答クイズ一覧
トップページ
 その他・関連するクイズ
このクイズ・検定や問題に関連するクイズを出題しております。出題文をクリックするとクイズにチャレンジできます。
すぐに答えを見たい場合は「解答を表示する」をクリックしてください。

以下のクイズは、クイズ計算9_2桁数と1掛け算より、出題しております。
説明:2桁の数×1連続数の掛け算 簡単にやろう! 例.13×111111=
①13543
②12423
③13333
④14443
解答を表示する

正解:④

解説:13×1111= ⇒1&(1+3)・・&3=14443 :《考え方》2桁の数×1連続は,2桁の左の数字「1」と右の数字「3」の間に,その和(1+3=4)を(1の個数-1)個,連続して書く

①422222
②466662
③258147369
④467832
解答を表示する

正解:②

解説:42×11111= ⇒4&(4+2)・・&2=466662 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「2」の間に,その和(4+2=6)を(1の個数-1=4)個,連続して書く

①544442
②25653
③23433
④24643
解答を表示する

正解:25553

解説:23×1111= ⇒2&(2+3)・・&3=25553 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「3」の間に,その和(2+3=5)を(1の個数-1=3)個,連続して書く

①1323231
②25553
③1123221
④1222221
解答を表示する

正解:④

解説:11×111111= ⇒1&(1+1)・・・&1=1222221

①1232321
②6771
③6781
④6661
解答を表示する

正解:②

解説:61×111= ⇒6&(6+1)・・&1 ⇒6771

①7651
②2567765
③2577555
④2767675
解答を表示する

正解:2777775

解説:25×111111= ⇒25×111111= ⇒2&(2+5)・・&5=2777775 :《考え方》2桁の数×1連続は,2桁の左の数字「2」と右の数字「5」の間に,その和(2+5=7)を(1の個数-1=5)5個,連続して書く

①3676
②2777775
③3996
④3936
解答を表示する

正解:③

解説:36×111= ⇒3&(3+6)・・&6 ⇒ 3996

①478983
②3876
③477773
④467673
解答を表示する

正解:③

解説:43×11111= ⇒4&(4+3)・・&3=477773 :《考え方》2桁の数×1連続は,2桁の左の数字「4」と右の数字「3」の間に,その和(4+3=7)を(1の個数-1)4個,連続して書く ⇒477773

①777778
②475763
③878788
④755558
解答を表示する

正解:866658

解説:78×11111= ⇒桁上がりを考慮する。 ⇒7&(7+8)・・&8=866658 :《考え方》2桁の数×1連続は,2桁の左の数字「7」と右の数字「8」の間に,その和(7+8=15)を(1の個数-1=4)個,連続して書くが,桁上がりを考慮すると,左と間の数は75555が86665となるから ⇒866658 

①866658
②91222212
③92222222
④12222222
解答を表示する

正解:10222212

解説:92×111111= ⇒桁上がりを考慮する。 ⇒9&(9+2)・・&2=10222212 :《考え方》2桁の数×1連続は,2桁の左の数字「9」と右の数字「2」の間に,その和(9+2=11)を(1の個数-1=5)個,連続して書くが,桁上がりを考慮すると,左と間の数は911111が1022221となるから ⇒10222212 

①677661
②788881
③777771
④10222212
解答を表示する

正解:②

解説:71×11111= ⇒7&(7+1)・・&1=788881

①90101
②101101
③100001
④911111
解答を表示する

正解:②

解説:91×1111= ⇒9(10)(10)(10)1⇒101101

①444888444
②448888844
③488888884
④484848484
解答を表示する

正解:③

解説:44×11111111= ⇒4&(4+4)・・&4=488888884

①500005
②876661
③488885
④477775
解答を表示する

正解:499995

解説:45×11111= ⇒4&(4+5)・・&5=499995

①878781
②797971
③499995
④888881
解答を表示する

正解:899991

解説:81×11111= 8&(8+1)・・&1=899991 :《考え方》2桁の数×1連続は,2桁の左の数字「8」と右の数字「1」の間に,その和(8+1=9)を(1の個数-1=4)個,連続して書く ⇒899991

①5789878983
②5999999993
③5888888883
④899991
解答を表示する

正解:③

解説:53×111111111= ⇒5&(5+3)・・&3=5888888883 :《考え方》2桁の数×1連続は,2桁の左の数字「5」と右の数字「3」の間に,その和(5+3=8)を(1の個数-1=8)個,連続して書く ⇒5888888883